
ELIMU PI ROBOTICS

Projects Guide

About

The Elimu Pi Robotics is a customized

programmable PCB designed circuit board that

uses the Elimu Pi Pico and Raspberry Pico

Microcontroller to achieve robotics and Internet

of Thing(IOT) prototypes and innovations.

This Elimu Pi Projects’ Guide is a guidebook for

robotics enthusiasts who want to learn how to

design, build and program their own robotic

project using Raspberry Pi. The book covers the

basics of robotics, such as sensors, motors,

controllers and communication and also provides

step-by-step instructions for several projects.

Whether you are a beginner or an expert, Elimu Pi

will help you unleash your creativity and

innovation in robotics.

Catalog

Getting Started .. 4

1. Install MicroPython Firmware ..4

2. Put Pico in Boot Mode .. 4

3. Installing the Firmware .. 4

4. Restart the Pico ..4

Please note .. 4

5. Installing Thonny IDE ...4

6. Installing Libraries in Thonny ... 5

Projects ..7

1) LED Blinking ... 7

2) Traffic Lights Control ... 9

3) Controlling a Servo Motor .. 11

4) LCD 16x2 Guide ... 12

5) Temperature and Humidity Monitor ..14

6) Ultrasonic Distance Meter ...16

7) Intruder Burglar Alarm System..18

8) Motion-Activated Light ..20

9) Automatic Lighting System ... 22

10) Robot Car Motor Control .. 24

11) Home Automation Systems ...26

12) Weather Monitoring Station ...28

13) Smart Agriculture Solutions ...30

14) Smart Parking System ..32

15) Air Quality Monitoring System ...34

Getting Started

To use the Elimu Pi Microcontroller, you first need to download the

MicroPython firmware Raspberry Pi Pico.

You will require an Elimu Pi Board, Micro USB, and Thonny software for these

projects.

1. Install MicroPython Firmware

To download the Firmware, visit the official MicroPython website and search

“MicroPython firmware for Raspberry Pi Pico”.

2. Put Pico in Boot Mode

To put your Pico in boot mode (programming mode), press and hold the

BOOTSEL button while connecting it to your computer using a micro USB

cable.

3. Installing the Firmware

Once the Pico is in boot mode, it should appear as a USB mass storage device

on your computer.

Copy the downloaded MicroPython firmware (.uf2 file) and paste it onto

Pico's USB mass storage device. This will flash the firmware onto the Pico.

4. Restart the Pico

After flashing the firmware, disconnect and reconnect the Pico from your

computer. It will now run the MicroPython firmware.

Please note

If you want your program to run without the Pi Pico being

connected to the computer, you have to rename the code to

“main.py “, and then save it to Pi Pico’s memory rather than the

computer.

5. Installing Thonny IDE

Make sure you are connected to the internet and browse the
https://thonny.org/ website.
For Windows users, download the Windows x64 setup file.
After downloading, run the setup file to install.

https://thonny.org/

6. Installing Libraries in Thonny

Step 1: Navigate to the tools panel.

Step 2: Click the Manage packages in the drop-down menu.

Step 3: In the search dialogue, type in the words adafruit-circuitpython-dht and
then click the search on Pypl

Step 4: Install the library as shown below.

Other Libraries that require to be installed include;
Module Library to be installed

LCD i2C (16x2) lcd_api.py” and “pico_i2c_lcd.py

DHT11 sensor module dhtsensor.py

BMP280 sensor module “bmp280” and “bmp-280”

Projects

1) LED Blinking

In this project, we will write a program in Thonny to blink the Raspberry Pi
Pico’s on-board LED. This on-board LED is connected to GP25.

Procedure 1: On-Board LED

a) Plug your Pico into your computer using a micro USB cable.
b) Create a new project in Thonny and write the code below.
c) Save it as “Blinking.py”
d) Click the "Run" button in Thonny to execute the code.

import machine
import utime
led = machine.Pin(25, machine.Pin.OUT) # Set GPIO 25 as an output pin
while True:
led.value(1) #Turns the LED on
utime.sleep(1) # Keep the LED on for 1 second
led.value(0) # Turn off the LED
utime.sleep(0.5) # Keep the LED off for 0.5 seconds

Procedure 2: Connecting an external LED

In this project, we will replace the on-board pin connection from GP25 to the
physical GP12 pin.

Requirements

 LED any color
 220R Ohms resistor
 Breadboard
 Jumper wires
a) Connect the LED's longer leg (anode) to one end of the resistor.
b) Connect the other end of the resistor to the “OUT” pin of “IR-RIGHT”.

(This OUT pin is connected to GP12 of the Pi Pico).
c) Connect the short leg (cathode) of the LED to one of the ground (GND)

pins on the Pico.
d) Using the “Blinking.py” Program, modify the LED’s pin from GPIO25 to

GPIO12.
e) The new line in the code should be as follows:

led = machine.Pin(12, machine.Pin.OUT)
f) Click the "Run" button in Thonny to execute the code.
Save the program in the Pi Pico’s memory as “main.py”. This will run the code
without necessarily connecting the board to your PC.

IR_RIGHT OUT
Connected to GP12

2) Traffic Lights Control

In this project, we will create traffic control lighting using LEDs and Resistors. It
helps the learner acquire skills in controlling multiple outputs using the Elimu Pi
Programming Board.

Requirements

 Breadboard
 3 LEDs (Red, Yellow, Green)
 3 Resistors, 220R ohms each
 Jumper wires

Procedure

a) Connect the longer leg (anode) of the red LED to one end of resistor1.
b) Connect the other end of resistor1 to the “OUT” pin of “IR_RIGHT”. (This

OUT pin is connected to GP12 of the Pi Pico).
c) Connect the longer leg (anode) of the yellow LED to one end of resistor 2.
d) Connect the other end of resistor 2 to the “OUT” pin of “IR_MID ”. (This

OUT pin is connected to GP11 of the Pi Pico).
e) Connect the longer leg (anode) of the green LED to one end of the

resistor3.
f) Connect the other end of resistor 3 to the “OUT” pin of “IR_LEFT ”. (This

OUT pin is connected to GP10 of the Pi Pico).
g) Connect the short legs (cathode) of all the LEDs to a common ground

(GND) pin on the Pico.

Working Principles

The circuit starts by turning on the red LED for 3 seconds then goes off. The
yellow LED turns on for 1 second then the green LED turns on for 3 seconds.
After the green LED goes off, the yellow LED turns on for 1 second followed by
the red one.
The cycle repeats from RED YELLOW GREEN  YELLOW RED.

IR_Left Out
GP10 IR_MID OUT

GP11
IR_RIGHT OUT

GP12

Figure 1: Traffic Light Diagram

import machine
import utime
red = machine.Pin(12, machine.Pin.OUT) # Set GPIO 25 as an output pin
yellow = machine.Pin(11, machine.Pin.OUT)
green = machine.Pin(10, machine.Pin.OUT)
while True:

red.value(1) #Turns the red LED on
utime.sleep(3) # Keep the LED on for 1 second
red.value(0) # Turn off the LED

yellow.value(1) #Turns the yellow red LED on
utime.sleep(1) # Keep the LED on for 1 second
yellow.value(0) # Turn off the LED

green.value(1) #Turns the green LED on
utime.sleep(3) # Keep the LED on for 1 second
green.value(0) # Turn off the LED

yellow.value(1) #Turns the yellow LED on
utime.sleep(1) # Keep the LED on for 1 second
yellow.value(0) # Turn off the LED

3) Controlling a Servo Motor

Servo motors are used to make precise angular rotations of the shaft and are
commonly applied in robotics and automation. This procedure guides on how
to control the Elimu Pi servo motors through predefined rotation angles.

Requirements

 Servo motor
 Jumper wires

Procedure

a) Connect the servo motor pins in the “Servo1” slot as follows; Brown wire
 GND, Red wire  5V, Orange/Yellow  Sig (GPIO 16.)

b) To use the “Sevo2” slot, connect the servo motor as follows, Brown wire
 GND, Red wire  5V, Orange/Yellow  Sig (GPIO 17).

c) Copy the code below in Thonny IDE then “Run the script” green button.
d) You can use both Servo1 and Servo2 slots at the same time, but you need

to specify that in the code.

Operation

This code rotates the servo motor by 120 degrees.
To change this angle, edit the line in the code from the “desired_angle = 120 ”
to your desired angle between 0 and 180 degrees.

from machine import Pin, PWM
import utime

def set_servo_angle(angle, pwm):
duty = int((angle / 180) * 8000 + 1000)
Adjust these values based on your servo
pwm.duty_u16(duty)

Define the servo control pin
servo_pin = Pin(16)
Create a PWM object for controlling the servo
servo_pwm = PWM(servo_pin)
servo_pwm.freq(50)
desired_angle = 120 #Set the desired angle 0 to 180
set_servo_angle(desired_angle, servo_pwm)
utime.sleep(2) # Allow time for the servo to move

4) LCD 16x2 Guide

This is a guide on how to use the 16x2 LCD to display names, letters, and
numbers in any project. This project assumes the LCD used has the i2C adapter
module and that the

Requirements

 16x2 LCD with i2C module.

Procedure

a) The LCD 16x2 i2C module has 4 pins; GND, VCC, SDA, SCL.
b) The Elimu Pi Board has 2 slots for the LCD, namely LCD1 and LCD2.
c) The pins are connected as follows
LCD1
LCD pin Raspberry Pi

SDA GP2

SCL GP3

LCD2
LCD pin Raspberry Pi

SDA GP6

SCL GP7

d) The GND and VCC/5V are connected to the power supply’s GND and
regulated 5Volts respectively.

e) Insert the LCD i2C’s terminals into the LCD1 slot.
f) If you don’t need to insert the LCD pins, then use jumper wires and

connect the LCD to the LCD1 slot terminals.
g) Connect SDASDA, SCLSCL, 5VVCC, GNDGND.
h) You can use the LCD2 slot as well, but be sure to define in the code the

GPIO pins used.
i) Install “lcd_api.py” and “pico_i2c_lcd.py “drivers in order to use the LCD

i2C functions.

Operation

This program is used to display specified words on the 16x2 LCD.
The display has two lines whereby each line can only accommodate 16
characters. (Commas, dashes, semicolons, space, etc., are all counted as
characters)

from machine import I2C, Pin
from lcd_api import LcdApi
from pico_i2c_lcd import I2cLcd

Initialize I2C communication
i2c = I2C(0, sda=Pin(16), scl=Pin(17), freq=400000)

Initialize LCD display
lcd = I2cLcd(i2c, 0x27, 2, 16)

Display "Elimu Pi" on the first line and "ROBOTICS" on the second line
lcd.putstr("Elimu Pi!\n< ROBOTICS >")

5) Temperature and Humidity Monitor

This project involves monitoring temperature and humidity using a DHT11
sensor with the Raspberry Pi Pico, and a 16x2 LCD.
To continue with this project, ensure to install the “adafruit-circuitpython-dht”,
“lcd_api.py", and “pico_i2c_lcd.py” drivers as indicated on the getting started
page above.

Requirements

 DHT 11 sensor
 Jumper wires.
 LCD 16x2 with i2C module.

Procedure

a) LCD 16x2 i2C module has 4 pins; GND, VCC, SDA, SCL.
b) Insert the LCD into the LCD1 connector slot.
c) On the LCD1 slot, connect the LCD terminals as follows; SDASDA,

SCLSCL, 5VVCC, GND GND.
d) SCL is connected to GPIO 3.
e) SDA is connected to GPIO 2.
f) The DHT11 sensor consists of 3 pins, Signal, VCC/5V, and GND.
g) Connect the VCC to any 5V pin on any connector.
h) Connect the GND to any GND on any connector.
i) Connect the signal pin to Elimu Pi’s IR-Right OUT pin. This OUT-pin is

connected to the GP10 of the Raspberry Pi Pico.
j) Copy the code provided to Thonny IDE and save. E.g., “dhtsensor.py”.
k) Click the run button.

Operation

The project uses a DHT11 sensor to obtain Humidity and Temperature values
from the surrounding environment with the help of Raspberry Pi Pico which
reads and processes the data obtained.
These values are displayed on the 16x2 LCD panel through the i2C adapter
module.

import machine
import dht
from machine import I2C, Pin
from lcd_api import LcdApi
from pico_i2c_lcd import I2cLcd
import time

Initialize I2C communication for LCD
i2c_lcd = I2C(0, sda=Pin(16), scl=Pin(17), freq=400000)
lcd = I2cLcd(i2c_lcd, 0x27, 2, 16)

Initialize DHT11 sensor
dht_sensor = dht.DHT11(machine.Pin(18))

def read_dht_values():
dht_sensor.measure()
return dht_sensor.temperature(), dht_sensor.humidity()

if __name__ == '__main__':
try:
while True:
temperature, humidity = read_dht_values()
lcd.clear()
lcd.putstr("Temp: {:.1f}C".format(temperature))
lcd.move_to(0, 1)
lcd.putstr("Humidity: {}%".format(humidity))

time.sleep(2)

except KeyboardInterrupt:
pass

6) Ultrasonic Distance Meter

In this project, we will use an Ultrasonic sensor to measure the distance
between the sensor and the object, and then display the measured distance on
a 16x2 LCD.

Requirements

Ultrasonic HC-SR04
16x2 LCD with i2C module
Jumper wires

Procedure

a) Connect the LCD to the LCD2 slot connectors.
b) For the LCD2 slot, the SDA is connected to GP6 while the SCL is to GP7 on

the Pico.
c) Connect the Ultrasonic sensor to the Connector slot named Ultrasonic on

the Elimu Pi Board.
d) The Trig pin is connected to pin GP15 while the Echo pin is connected to

pin GP14.
e) Open Thonny IDE and install “lcd_api.py” and “pico_i2c_lcd.py“ libraries

to use the i2C adapter, as indicated on the “Getting Started” page.
f) Write the code provided below and save it e.g., “Ultrasonic.py “ on the

Raspberry Pi Pico.

Operation

With this code, the ultrasonic sensor will continuously measure distances and
display the readings on the 16x2 LCD. The LCD will show the distance in
centimeters.

import machine
import time
from machine import I2C, Pin
from lcd_api import LcdApi
from pico_i2c_lcd import I2cLcd

Initialize I2C communication for LCD
i2c_lcd = I2C(0, sda=Pin(2), scl=Pin(3), freq=400000)
lcd = I2cLcd(i2c_lcd, 0x27, 2, 16)

Initialize ultrasonic sensor
trigger_pin = machine.Pin(15, machine.Pin.OUT)
echo_pin = machine.Pin(14, machine.Pin.IN)

def measure_distance():
Send a trigger pulse
trigger_pin.low()
time.sleep_us(2)
trigger_pin.high()
time.sleep_us(10)
trigger_pin.low()

Measure the pulse duration on the echo pin
pulse_duration = machine.time_pulse_us(echo_pin, machine.Pin.high(), 30000)

Calculate distance using the speed of sound (343 m/s)
distance = pulse_duration * 0.0343 / 2
return distance

while True:
distance = measure_distance()
lcd.clear()
lcd.putstr("Distance: {:.2f} cm".format(distance))

time.sleep(1)

7) Intruder Burglar Alarm System

A burglar alarm detects unauthorized entry using sensors, triggering alarms or
notifications for home or office security. In this project, we will use a PIR
sensor and buzzer to notify the user of any intrusion.

Requirements

 PIR motion sensor
 Active buzzer
 Jumper wires

Procedure

a) For the PIR sensor, we will use the IR_RIGHT connecting slot. GP12
b) For the buzzer, we will use the IR_LEFT connecting slot. GP10
c) Connect the output pin of the PIR motion sensor to the IR-RIGHT Out slot,

which is connected to GP12 of the Pi Pico.
d) Connect the VCC and GND of the sensor to any of the 5V and GND pins

on the Elimu Pi respectively.
e) Connect the positive (anode) pin of the buzzer to the IR_LEFT OUT pin

slot (GP10).
f) Connect the negative (cathode) pin of the buzzer to any GND pin on the

Elimu Pi board.
g) Write the code provided in Thonny IDE and save it in the Raspberry Pi as

“Burglar_alarm.py”
h) Run the code by clicking the play/ run button on the Thonny IDE.

Operation

The PIR motion sensor detects motion and activates the buzzer to create an
alarm sound. The buzzer sounds for 1 second before turning off.
When no motion is detected, the buzzer is deactivated.

import machine
import time

Initialize PIR sensor and buzzer pins
pir_pin = machine.Pin(12, machine.Pin.IN)
buzzer_pin = machine.Pin(10, machine.Pin.OUT)

while True:
if pir_pin.value() == 1: # Motion detected

buzzer_pin.on()
time.sleep(0.5) # Buzzer on for 0.5 seconds
buzzer_pin.off()
time.sleep(2) # Wait for 2 seconds before checking again

else:
time.sleep(0.1) # Delay between PIR sensor checks

8) Motion-Activated Light

This guide demonstrates how to create motion-activated light using a PIR
sensor. LED and resistor can be used as the source of light. To replace the LED
with a higher voltage lamp, a relay is used to interface the Microcontroller to
the lamp and power supply.

Requirements

 PIR motion sensor
 Relay module
 LED
 220R resistor
 Jumper wires

Procedure using LED

a) For the PIR sensor, we will use the IR_RIGHT connecting slot. GP12
b) For the Relay/LED, we will use the IR_MID connecting slot. GP11
c) Connect the output pin of the PIR motion sensor to the IR-RIGHT Out slot,

which is connected to GP12 of the Pi Pico.
d) Connect the VCC and GND of the sensor to any of the 5V and GND pins

on the Elimu Pi respectively.
e) Connect one pin of the 220R resistor to the IR_MID Out slot which is

connected to GP11 on the Pi Pico.
f) Connect the other pin of the resistor to the positive/longer pin of the LED.
g) Connect the other pin of the LED to any GND port on the Elimu Pi board.

Procedure using Relay module

h) Follow the procedure from ‘a’ to ‘d’ above.
i) Connect the input/control pin of the relay module to the IR_MID Out slot

which is connected to GP11 on the Pi Pico.
j) Connect the VCC and GND of the relay to any 5V and GND pins on the

Elimu Pi board.
k) Connect the positive terminal of the lamp to the COM of the relay module,

and the other terminal to the negative terminal of the power
supply/battery.

l) Connect the positive terminal of the battery/power supply to the N/O
(Normally Open) of the relay module.

m) Write the code provided in Thonny IDE and save it on the Raspberry Pi
Pico.

Operation

When the PIR senses motion within its surroundings, it sends signals to the
Microcontroller, which in turn activates the relay module. This completes the
external circuit where the external power supply is connected for 5 seconds
before the lamp goes off.
When no motion is detected, the lamp remains off.

import machine
import time

Initialize PIR sensor and relay pins
pir_pin = machine.Pin(12, machine.Pin.IN)
relay_pin = machine.Pin(11, machine.Pin.OUT)

while True:
if pir_pin.value() == 1: # Motion detected

relay_pin.on()
time.sleep(5) # Bulb lights on for 5 seconds
relay_pin.off()
time.sleep(2) # Wait for 2 seconds before checking again

else:
time.sleep(0.1) # Delay between PIR sensor checks

9) Automatic Lighting System

In this project, we will automate the lighting of a bulb that lights up at night
and go off during the day. This is a useful remedy in reducing the cost of
electricity bills.

Requirements

 LDR (Light Dependent Resistor)
 Relay module
 5 VDC bulb
 Power supply (can be 5V)
 Jumper wires
 1K resistor
 10K resistor

Method

a) Connect the 1K resistor in series with the LDR as shown in the diagram
below.

b) Use any 5V and GND ports on the Elimu Pi board.
c) Connect the signal pin to Analog slot A0. This pin is connected to GP28 on

the Raspberry Pi Pico.
d) Connect the input/control pin of the relay module to the IR_MID Out slot

which is connected to GP11 on the Pi Pico.
e) Connect the VCC and GND of the relay to any 5V and GND pins on the

Elimu Pi board.
f) Connect the positive terminal of the lamp to the COM of the relay module,

and the other terminal to the negative terminal of the power
supply/battery.

g) Connect the positive terminal of the battery/power supply to the N/O
(Normally Open) of the relay module.

h) Write the code provided below in Thonny IDE and save it on the
Raspberry Pi Pico.

Operation

You might be required to change the threshold value depending on the
resistor’s value used in the pull-down connection.
When the program runs, the LDR continuously measures the light level by
calculating the amount of current and resistance going to the Microcontroller.
When this value is below the threshold (When there is darkness) the relay
activates and the bulb goes on until when there is enough light in the
surroundings (the value rises above the threshold).

import machine
import time

Define pin numbers
ldr_pin = machine.ADC(machine.Pin(28)) # Analog input for LDR
relay_pin = machine.Pin(11, machine.Pin.OUT) # Digital output for relay

Adjust this threshold value to match your ambient light conditions
ldr_threshold = 500

while True:
ldr_value = ldr_pin.read_u16()

if ldr_value < ldr_threshold:
Turn on the relay to activate the bulb
relay_pin.value(1)

else:
Turn off the relay to deactivate the bulb
relay_pin.value(0)

time.sleep(1)

10) Robot Car Motor Control

In this project, we will control the motors’ rotation using the built-in motor
driver on the Elimu Pi board. Using this board, we can control the direction of
rotation and speed of up to two 5VDC motors.

Requirements

 Two 5VDC motors with motors

Method

a) On the Elimu Pi board, connect the motors on the connecting slots labeled
L_MOTOR and R_MOTOR.

b) Write and save the code provided below in Thonny IDE and run it.

Left Motor Right Motor

Enable 1 Input 1 Input 2 Enable 2 Input 3 Input 4

GP8 GP18 GP19 GP22 GP20 GP21

Operation

This program demonstrates forward, backward, left, and right movements with
adjustable motor speeds.
To move the robotic car forward, you need to set both the left and right
motors to rotate in the same direction with the same amount of speed.
To move backward, the direction of rotation is reversed for both wheels, but
keep the same speed of rotation.
To make the car move towards the right, set the left motor to forward
rotation, while the right motor is set to reverse direction. Alternatively, you
can set both motors to move forward, but let the rotation speed of the left
motor be higher than that of the right motor.
To make the car move towards the left, set the right motor to forward
rotation, while the left motor is set to reverse direction. Otherwise, you can set
both motors to move forward, but let the rotation speed of the right motor be
higher than that of the left motor.

import machine
import utime

#Define Pin outputs
Motor_Forward = machine.Pin(20, machine.Pin.OUT)
Motor_Reverse = machine.Pin(21, machine.Pin.OUT)
Motor_enable = machine.Pin(22, machine.Pin.OUT)

#Define Directions
def forward():
Motor_Forward.on()
Motor_Reverse.off()
Motor_enable.on()

def reverse():
Motor_Forward.off()
Motor_Reverse.on()
Motor_enable.on()

def stop():
Motor_Forward.off()
Motor_Reverse.off()
Motor_enable.off()

while True:
forward()
utime.sleep(5)
stop()
utime.sleep(4)
reverse()
utime.sleep(5)
stop()
utime.sleep(4)

11) Home Automation Systems

Home automation aids in monitoring and controlling various devices
connected to a network remotely. This includes lighting, heating, cooling, and
other appliances.

Requirements

 5 VDC fan (motor)
 DHT11 sensor
 Relay Module
 5V power supply
 LEDs
 220R resistor
 ESP8266 WI-FI

Method

a) Connect the input/control pin of the relay module to the IR_Right Out slot
which is connected to GP12 on the Pi Pico.

b) Connect the VCC and GND of the relay to any 5V and GND pins on the
Elimu Pi board.

c) Connect the positive terminal of the 5VDC motor to the COM of the relay
module, and the other terminal to the negative terminal of the power
supply/battery.

d) Connect the positive terminal of the battery/power supply to the N/O
(Normally Open) of the relay module.

e) For the DHT11 sensor, connect the VCC to any 5V pin on any connector.
f) Connect the GND of the DHT11 to any GND on any connector.
g) Connect the DHT11’s signal pin to Elimu Pi’s Servo2 pin. This OUT-pin is

connected to GP17 of the Raspberry Pi Pico.
h) Connect one pin of the 220R resistor to the Servo1 slot which is connected

to GP16 on the Raspberry Pi Pico.
i) Connect the other pin of the resistor to the positive/longer pin of the LED.
j) Connect the other pin of the LED to any GND port on the Elimu Pi board.

Operation

This project enables the user to control the fan and lighting, remotely via a WI-
FI connection. The Blynk Android-based app is used to send and receive
commands from remote devices.

12) Weather Monitoring Station

This project involves creating a weather monitoring station for measuring and
displaying various weather parameters such as temperature, humidity, and
pressure.

Requirements

 HC-05 Bluetooth module
 BMP280 (Temperature and humidity)
 DHT11 sensor
 Jumper wires

Method

a) Install the adafruit-circuitpython-dht library for the DHT11 sensor on your
Raspberry Pi Pico.

b) Install the adafruit-circuitpython-bmp280 library for the BMP280 sensor
on your Raspberry Pi Pico.

c) For the DHT11 sensor, connect the VCC to any 5V pin on any connector.
d) Connect the GND to any GND on any connector.
e) Connect the signal pin to Elimu Pi’s IR-Right OUT pin. This OUT-pin is

connected to the GP10 of the Raspberry Pi Pico.
f) For the BMP280 sensor, connect its 5V and GND pins to any of the 5V

and GND pins on the Elimu Pi Board. Connect the sensor’s SDA and SCL
pins to LCD_1 SDA and SCL slot.

g) For the Bluetooth module, insert it on the “BLUETOOTH” connecting slot
provided on the Elimu Pi board. The Tx of the module is connected to GP1
and Rx to GP0.

h) Pair the HC-05 module with your phone and connect.
i) Download “Serial Bluetooth Terminal’” from the Google Play Store and

use it to receive the data being sent by the Raspberry Pi.
Bluetooth module BMP280 module DHT11

Tx Rx SCL (LCD1) SDA (LCD1) Signal Pin

GP1 GP0 GP3 GP2 GP10

Operation

When the program starts running, the DHT and BMP sensors obtain the
temperature, humidity, and pressure values from the surrounding environment.
These values are processed by the Raspberry Pi Pico which then sends them to
the Bluetooth terminal app via the HC-05 module, whenever the phone and
the Bluetooth module are connected.

import machine
import utime
import dht
import BME280
import bluetooth

Initialize BMP280
i2c = machine.I2C(0, sda=machine.Pin(2), scl=machine.Pin(3))
bmp280 = BME280.BME280(i2c=i2c)

Initialize DHT11
dht_sensor = dht.DHT11(machine.Pin(10))

Initialize Bluetooth
uart = machine.UART(0, baudrate=9600, tx=machine.Pin(1), rx=machine.Pin(0))
bt = bluetooth.BLE()

def read_sensors():
temperature = bmp280.temperature
pressure = bmp280.pressure
dht_sensor.measure()
humidity = dht_sensor.humidity()
return temperature, pressure, humidity

while True:
temperature, pressure, humidity = read_sensors()

Prepare the data as a string
data = "Temperature: {:.2f} C, Pressure: {:.2f} hPa, Humidity:

{:.2f}%".format(temperature, pressure, humidity)

Send data via Bluetooth
uart.write(data + '\n')

utime.sleep(300) # Sleep for 5 minutes (adjust as needed)

13) Smart Agriculture Solutions

This agricultural project makes use of a soil moisture sensor to measure the
amount of moisture in the soil and control the powering of the motor pump
depending on the amount of moisture available.

Requirements

 16x2 LCD with i2C module
 5VDC relay
 5VDCmotor pump (Micro Submersible)
 Soil moisture sensor (YL-69) and sensing probe

Method

a) The Sensor module consists of VCC, GND, D0, and A0. Connect the
sensor’s VCC and GND to any of the 5V and GND pins on the Elimu Pi
board.

b) Connect the A0 (Analog Pin of the sensor) to A1 of the Elimu Pi board,
which is connected to GP27 of the Raspberry Pi Pico.

c) Insert the LCD into the LCD1 connector slot.
d) On the LCD1 slot, connect the LCD terminals as follows; SDASDA,

SCLSCL, 5VVCC, GND GND.
e) SCL is connected to GPIO 3.
f) SDA is connected to GPIO 2.
i) Connect the input/control pin of the relay module to the IR_MID Out slot

which is connected to GP11 on the Pi Pico.
j) Connect the VCC and GND of the relay to any 5V and GND pins on the

Elimu Pi board.
k) Connect the positive terminal of the DC Pump to the COM of the relay

module, and the other terminal to the negative terminal of the power
supply/battery.

g) Connect the positive terminal of the battery/power supply to the N/O
(Normally Open) of the relay module.

Operation

The soil moisture sensor continuously checks the soil's moisture level.
This value is processed by the Raspberry Pi Pico through the analog pins, and if
the soil becomes dry (below a set threshold), the system activates and the relay
controls the water pump, providing water to the plants as the 16x2 LCD the
status information.
The system runs autonomously, ensuring plants receive water only when
needed, saving resources, and promoting plant health.

import machine
import utime
from RPi_I2C_driver import i2c_lcd

Define GPIO pins
relay_pin = 11
moisture_sensor_pin = machine.A1

Initialize the relay and moisture sensor
relay = machine.Pin(relay_pin, machine.Pin.OUT)
moisture_sensor = machine.ADC(moisture_sensor_pin)

Initialize the LCD
i2c = machine.I2C(1, scl=machine.Pin(3), sda=machine.Pin(2))
lcd = i2c_lcd.i2c_lcd(i2c, 0x27, 2, 16)
lcd.backlight()

def water_plants():
lcd.lcd_clear()
lcd.lcd_display_string("Soil is dry.", 1)
lcd.lcd_display_string("Watering plants...", 2)

relay.value(1)
utime.sleep(10) # Run the pump for 10 seconds (adjust as needed)

relay.value(0)
lcd.lcd_clear()
lcd.lcd_display_string("Watering complete.", 1)

while True:
moisture_reading = moisture_sensor.read_u16()

Adjust this threshold based on your soil moisture sensor
if moisture_reading < 20000:
water_plants()

else:
lcd.lcd_clear()
lcd.lcd_display_string("Soil is moist.", 1)

utime.sleep(3600) # Check moisture every hour (adjust as needed)

14) Smart Parking System

This project involves building a system that monitors and manages the parking
spaces and displays the status of

Requirements

 3 IR sensors (HW201 IR)
 16x2 LCD with i2C module
 Micro servo motor
 Jumper wires

Method

a) Connect the LCD to the LCD1 slot connectors on the Elimu Pi board.
b) For the LCD1 slot, the SDA pin is connected to GP2 while the SCL is to GP3

on the Raspberry Pi Pico. SDASDA, SCLSCL, 5VVCC,
GNDGND.

c) The GND and VCC/5V are connected to the power supply’s GND and
regulated 5Volts respectively.

d) Connect the three IR sensors to the IR slots on the Elimu Pi board, namely
IR_RIGHT, IR_MID, and IR_LEFT.

e) Connect the servo motor to the Servo1 slot on the Elimu Pi Board as
follows; Brown wire  GND, Red wire  5V, Orange/Yellow 
Sig (GPIO 16.)

IR_RIGHT IR_MID IR_LEFT SDA LCD1 SCL LCD1 Servo 1 OUT

GP12 GP11 GP10 GP2 GP3 GP16

Operation

The IR sensors detect the presence of vehicles in the parking spaces. If a space is
occupied, the IR sensor corresponding to that space returns a HIGH signal.
Otherwise, it returns a LOW signal.
The script continuously checks the status of the parking spaces using the IR
sensors. It displays the status on the LCD and opens the gate (servo motor) if at
least one of the three spaces is available. If all the spaces are occupied, the gate
remains closed.
The LCDs the status of each parking space and indicates whether it's "Available"
or "Occupied".

import machine
import time
from machine import Pin, PWM
from lcd_api import LcdApi
from pico_i2c_lcd import I2cLcd

Define GPIO pins for IR sensors
ir_left = Pin(10, Pin.IN)
ir_mid = Pin(11, Pin.IN)
ir_right = Pin(12, Pin.IN)

Define GPIO pins for servo motor
servo_pwm = PWM(Pin(16))
servo_pwm.freq(50) # Set PWM frequency

Define LCD settings
i2c = machine.I2C(0, sda=machine.Pin(2), scl=machine.Pin(3), freq=400000)
lcd = I2cLcd(i2c, 0x27, 2, 16)

def check_parking_spaces():
while True:
space1 = ir_left.value() # 0 if empty, 1 if occupied
space2 = ir_mid.value()
space3 = ir_right.value()

Check if at least one parking space is empty
if space1 == 0 or space2 == 0 or space3 == 0:
servo_pwm.duty_u16(3277) # Rotate the servo 120 degrees (out of 65535)

else:
servo_pwm.duty_u16(0) # Stop the servo if all spaces are occupied

Display the status of parking spaces on the LCD
lcd.clear()
lcd.putstr("P1: " + ("Available" if space1 == 0 else "Occupied") + "\n")
lcd.putstr("P2: " + ("Available" if space2 == 0 else "Occupied") + "\n")
lcd.putstr("P3: " + ("Available" if space3 == 0 else "Occupied"))

time.sleep(1)

check_parking_spaces()

15) Air Quality Monitoring System

This project aims to create an air quality monitoring system that uses an MQ-2
gas sensor to detect various gases, a relay to control a 5VDC fan, and a buzzer
for creating alerts.

Requirements

 5V Relay Module
 Gas sensor MQ-2 module
 5VDC fan
 Power supply
 Active Buzzer

Method

a) For the MQ-2 sensor, connect the pins as follows; VCC (MQ-2) 5V
(Pico), GND (MQ-2) GND (Pico), DOUT (MQ-2)IR_RIGHT Out
slot(GP12)

b) Connect the input/control pin of the relay module to the IR_MID Out slot
which is connected to GP11 on the Pi Pico.

c) Connect the VCC and GND of the relay to any 5V and GND pins on the
Elimu Pi board.

d) Connect the positive terminal of the 5VDC motor/fan to the COM of the
relay module, and the other terminal to the negative terminal of the
power supply/battery.

e) Connect the positive terminal of the battery/power supply to the N/O
(Normally Open) of the relay module.

f) Connect the positive (anode) pin of the buzzer to the IR_LEFT slot (GP10).
g) Connect the negative (cathode) pin of the buzzer to any GND pin on the

Elimu Pi board.

Operation

The MQ-2 gas sensor measures the presence of various gases within the
surrounding environment. It returns a digital signal (HIGH or LOW) based on
the level of the detected gas.
The script continuously reads data from the MQ-2 sensor. If the gas level is
high, it activates the relay to turn on the extractor fan and triggers the buzzer
alerting the users.

import machine
import utime

Define GPIO pins
MQ2_PIN = machine.Pin(12, machine.Pin.IN) # GPIO 12
RELAY_PIN = machine.Pin(11, machine.Pin.OUT) # GPIO 11
BUZZER_PIN = machine.Pin(10, machine.Pin.OUT) # GPIO 10

def read_gas_sensor():
return MQ2_PIN.value()

def turn_on_fan():
RELAY_PIN.on()

def turn_off_fan():
RELAY_PIN.off()

def sound_buzzer():
BUZZER_PIN.on()

def silence_buzzer():
BUZZER_PIN.off()

while True:
gas_detected = read_gas_sensor()

if gas_detected:
turn_on_fan()
sound_buzzer()

else:
turn_off_fan()
silence_buzzer()

utime.sleep(1)

	Getting Started
	1.Install MicroPython Firmware
	2.Put Pico in Boot Mode
	3.Installing the Firmware
	4.Restart the Pico
	Please note
	5.Installing Thonny IDE
	6.Installing Libraries in Thonny
	Projects
	1)LED Blinking
	Procedure 1: On-Board LED
	Procedure 2: Connecting an external LED
	Requirements

	2)Traffic Lights Control
	Requirements
	Procedure
	Working Principles

	3)Controlling a Servo Motor
	Requirements
	Procedure
	Operation

	4)LCD 16x2 Guide
	Requirements
	Procedure
	Operation

	5)Temperature and Humidity Monitor
	Requirements
	Procedure
	Operation

	6)Ultrasonic Distance Meter
	Requirements
	Procedure
	Operation

	7)Intruder Burglar Alarm System
	Requirements
	Procedure
	Operation

	8)Motion-Activated Light
	Requirements
	Procedure using LED
	Procedure using Relay module
	Operation

	9)Automatic Lighting System
	Requirements
	Method
	Operation

	10)Robot Car Motor Control
	Requirements
	Method
	Operation

	11)Home Automation Systems
	Requirements
	Method
	Operation

	12)Weather Monitoring Station
	Requirements
	Method
	Operation

	13)Smart Agriculture Solutions
	Requirements
	Method
	Operation

	14)Smart Parking System
	Requirements
	Method
	Operation

	15)Air Quality Monitoring System
	Requirements
	Method
	Operation

